КРОВЬ
Функции крови и лимфы
Кровь и лимфа являются производными мезенхимы. Вместе с органами кроветворения и иммунопоэза., лимфоидными образованиями, ассоциированными со структурами некроветворных органов, они связаны генетически и функционально, обеспечивая поддержание постоянства внутренней среды (гомеостаз), внутреннее дыхание, трофику, регуляцию и интеграцию всех систем организма, экскрецию шлаков и защиту (фагоцитоз, клеточный и гуморальный иммунитет, тромбообразование).
Морфология крови
Кровь состоит из плазмы (55-60%) и форменных элементов (40-45%).
Плазма – жидкая часть крови. В ней содержатся белки (более 100 разновидностей), жиры, углеводы, соли, гормоны, ферменты, антитела, растворенные газы и др. На сухой остаток плазмы приходится 7-10%, остальную часть составляет вода (90-93%). Основным компонентом сухого остатка являются белки (6,5-8,5%). Среда ее слабощелочная (рН 7,4). Белки плазмы делятся на 2 фракции: легкую фракцию составляют альбумины (60%) и тяжелую – глобулины (40%).
Альбумины синтезируются в печени. Они обеспечивают коллоидно-осмотическое давление крови, удерживают воду в кровотоке (при их недостатке – отёки), выполняют транспортную функцию, адсорбируя ряд соединений.
Глобулины имеют двоякое происхождение. Одни из них, γ-глобулины (антитела), продуцируются В-лимфоцитами и плазмоцитами, а другие, β-глобулины, фибриноген и протромбин, образуются в печени. β-глобулины способны связывать и переносить ионы Fe, Cu, Zn и др., а фибриноген и протромбин участвуют в тромбообразовании.
Форменные элементы крови. Д. Л.Романовский в 1891г. предложил окраску мазков крови смесью двух красителей – эозином и азуром-II, что позволило дифференцировать форменные элементы крови, к которым относятся эритроциты, лейкоциты, стволовые клетки и кровяные пластинки.
Эритроциты. У млекопитающих – это безъядерные клетки, у птиц, пресмыкающихся, амфибий и рыб они содержат ядра. Размеры эритроцитов имеют видовые особенности и в каждом конкретном случае они делятся на нормоциты, микроциты и макроциты (разнообразие размеров эритроцитов называется анизоцитозом).
В норме эритроциты имеют форму двояковогнутого диска (дискоциты). Однако при старении и различного рода патологических состояниях они могут изменять свою форму, в связи с чем различают: планициты - с плоской поверхностью, стоматоциты - куполообразной формы, сфероциты – шаровидные, эхиноциты – шиповидные и др.
– (разнообразие форм эритроцитов называется пойкилоцитозом - греч. пойкилис - разновидный).
Функции эритроцитов: транспорт О2 и СО2 (дыхательная), аминокислот, антител, токсинов, лекарственных веществ путём адсорбции. Дыхательная функция связана со способностью гемоглобина (Hb) присоединять к себе кислород (O2) и диоксид углерода (CO2). Однако Hb может образовывать прочные связи и с другими химическими соединениями:
Нb – дезоксигемоглобин,
НbО – оксигемоглобин,
НbСО2 – карбгемоглобин,
НbСО – карбоксигемоглобин (СО - угарный газ, прочность связи с Нb у которго в 300 раз выше, чем с О2),
Нb + сильные окислители (КМnO4; анилин, нитробензол и др.) → НbОН – метгемоглобин (в этих случаях Fe+2→ Fe+3, вследствие чего способность Нb присоединять кислород утрачивается).
Особенности строения плазмолеммы эритроцитов. Плазмолемма эритроцитов представляет собой типичную биологическую мембрану, состоящую из билипидного слоя и белков в комплексе с углеводами. Соотношение липидов и белков в ней 1:1. Углеводы входят в состав гликокаликса. На наружной поверхности мембраны расположены фосфолипиды, сиаловая кислота, антигенные олигосахариды, адсорбированные протеины. На внутренней - гликолитические ферменты, Na+-АТФазы и K+-АТФазы, гликопротеины и цитоскелетные белки.
В состав липидов внешнего слоя плазмолеммы входят фосфатидилхолин и сфингомиелин, содержащие холин, а внутреннего – фосфатидилсерин и фосфатидилэтаноламин, которые на конце молекулы несут аминогруппу. С внешней стороны имеются гликолипиды (5%). К трансмембранным гликопротеинам относится гликофорин. Его 16 олигосахаридных цепей располагаются в гликокаликсе. Среди них сиаловая кислота обеспечивает отрицательный заряд наружной поверхности мембраны зрелых эритроцитов. Это позволяет выходить зрелым клеткам из красного костного мозга. С гликофоринами связывают антигенные свойства различных групп крови.
Примембранный белок спектрин входит в состав цитоскелета и участвует в поддержании формы эритроцита. Спектрин вместе с другим белком – актином связаны белком полосы 4.1 в «узловой комплекс», который соединен с белком гликофорином. Изменение количества спектрина приводит к изменению формы эритроцита (сфероциты).
С плазмолеммой спектриновый цитоскелет связан другим белком – анкирином в зоне локализации трансмембранного белка полосы 3, который участвует в обмене О2 и СО2. Он формирует также гидрофильные «поры» – водные ионные каналы.
Состав цитоплазмы эритроцитов: Вода – 66%, гемоглобин – 33% (гем в нём составляет – 4%).
При различных патологических состояниях эритроциты могут подвергаться:
1. склеиванию, образуя монетные столбики (вследствие утраты заряда, обеспечивающего поверхностное натяжение);
2. гемолизу (при воздействии гипотоническим раствором, плазмой других видов, змеиным ядом гемоглобин поступает в плазму, при этом оболочка остаётся неповрежденной);
3. кренированию – сморщиванию (при воздействии гипертоническим раствором); от греч. сrеnа – вырезка;
4. разрушению (гемоглобин окрашивает мочу – гемоглобинурия), например, у КРС - «красная водная лихорадка» при разрушении эритроцитов паразитами; у человека - гемоглобинурийная лихорадка - при малярии.
Стареющие эритроциты фагоцитируются макрофагами. Продолжительность жизни эритроцитов 120 дней
Лейкоциты. В отличие от эритроцитов, «работающих» непосредственно в крови, лейкоциты «работают» в тканях тела, мигрируя (путем диапедеза) через стенки капилляров. Это ядросодержащие клетки.
Лейкоциты классифицируют на зернистые (гранулоциты) и незернистые (агранулоциты).
Гранулоциты. Своё название зернистые лейкоциты (гранулоциты) получили в связи с неоднозначностью окрашиваемости их гранул красителями при разных значениях рН среды, в связи с чем различают базофильные, эозинофильные и нейтрофильные зернистые лейкоциты.
Базофилы – клетки шаровидной формы, диаметром до 10–12 мкм. Ядро имеет лопастную или бобовидную форму (в зависимости от степени зрелости клеток). В их базофильной цитоплазме содержатся довольно крупные гранулы, окрашивающиеся основными красителями. Одной из особенностей содержимого гранул базофилов является метахроматическое их окрашивание красителями тиазинового ряда (метиленовый синий, толуидиновый синий и др., при этом вместо синей окраски гранулы приобретают фиолетовый, розовый или красный цвет).
В гранулах базофилов содержатся биологически активные вещества: протеогликаны, ГАГ (в том числе гепарин), вазоактивный гистамин, нейтральные протеазы, серотонин, пероксидазы, кислая фосфатаза, серотонин (гормон эпифиза, который ослабляет или угнетает секрецию гонадолиберинов в гипоталамусе), гистидиндекарбоксилаза (фермент синтеза гистамина) и др.
Функции базофилов. Базофилы могут фагоцитировать бактерии, препятствуют свёртыванию крови (гепарин), способствуют расширению сосудов и повышают проницаемость их стенки (гистамин), вследствие чего возникают отёки. Они опосредуют воспаление, активируют макрофаги, участвуют в иммунологических реакциях аллергического характера: секретируют эозинофильный хемотаксический фактор, который стимулирет миграцию эозинофилов. При астме, анафилаксии, сыпи наблюдается немедленного типа дегрануляция, пусковым механизмом которой является IgE-рецептор для IgE. Вместе с тучными клетками участвуют в антисвёртывающей системе крови и регуляции проницаемости стенки сосудов, вместе с нейтрофилами образуют биологически активные метаболиты арахидоновой кислоты – лейкотриены и простагландины. Базофильные гранулоциты не являются активными индукторами в развитии гиперчувствительности замедленного типа.
В периферической крови базофилы пребывают примерно 1-2 суток, а затем мигрируют в межклеточное вещество соединительной ткани, где продолжительность их жизни не велика.
Эозинофилы. Размеры этих клеток достигают 12-17 мкм. Ядро зрелых клеток обычно содержит 2 сегмента, но у овец – больше. Очень редко встречаются палочкоядерные и юные эозинофилы. Гранулы в цитоплазме довольно крупные. Различают две их разновидности: первичные азурофильные и вторичные – эозинофильные (модифицированные лизосомы). В центре эозинофильной гранулы содержится кристаллоид, который содержит главный основной белок, богатый аргинином, катионный белок, лизосомные гидролитические ферменты, пероксидазу, гистаминазу и др. Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.
Функции эозинофилов. Эозинофилы – фагоцитируют бактерии, обладают хемотаксисом к гистамину, лимфокинам Т-лимфоцитов и иммунным комплексам, состоящим из антигенов и антител, обезвреживают перекиси и токсины, снимают сосудорасширяющее действие гистамина (антигистаминная - ограничение воспалительного процесса), являются важнейшими эффекторными клетками в противопаразитарном иммунитете. Антипаразитарная функция осуществляется с участием главного основного белка кристаллоида.
В аллергических реакциях принимают участие Fс-рецептор плазмолеммы для IgE, а также С3- и С4– рецепторы.
Эозинофильные гранулоциты в крови находятся около 12-ти часов, а затем мигрируют в межклеточное вещество соединительной ткани, где функционируют до 8-12 суток (в соед. ткани их в 500 раз больше, чем в крови). Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.
Нейтрофилы. Размеры этих клеток варьируют в пределах 9–12 мкм. Форма ядра непостоянна и зависит от степени зрелости клеток. В связи с этим различают юные, палочкоядерные и сегментоядерные нейтрофильные гранулоциты. У юных нейтрофилов ядро имеет бобовидную форму, гранул в цитоплазме относительно не много. Ядра палочкоядерных нейтрофилов выглядят в виде в разной степени изогнутой палочки, а в зрелых клетках – оно фрагментировано на сегменты, соединенные между собой тонкими перемычками. В цитоплазме нейтрофилов содержится 2 вида гранул:
1) первичные азурофильные неспецифичные (ПАН), их размеры - 0,4-0,8 мкм (до 20%), представляют собой первичные лизосомы, содержащие ß-глюкуронидазу, кислую ß-глицерофосфатдегидрогеназу, кислую протеазу, лизоцим (мурамидазу), кислую фосфатазу, миелопероксидазу (превращает перекись водорода в молекулярный кислород).
2) вторичные нейтрофильные специфические гранулы (ВНС), размеры которых составляют 0,1-0,3 мкм; они содержат щёлочную фосфатазу, фагоцитины, аминопептидазы, лизоцим, катионные белки и белок лактоферрин, обеспечивающий склеивание бактерий (бактериальная мультипликация) и торможение образования лейкоцитов в красном костном мозге.
Описание нейтрофильных гранулоцитов следует дополнить современными данными о третичных гранулах, секреторных пузырьках и адгезивных молекулах.
Функция нейтрофилов – неспецифическая антибактериальная защита путём фагоцитоза и выделения бактерицидных веществ, участие в воспалительных реакциях (осуществляется вне сосудов, в межклеточном веществе соединительных тканей). В образовании эндогенного пирогена, который теперь идентифицирован как интерлейкин-1, нейтрофильные гранулоциты не участвуют, его продуцируют клетки моноцитарно-макрофагальной системы. В крови они находятся до 8-12 часов, а в тканях - до 9 суток, где они погибают.
Агранулоциты. К незернистым лейкоцитам относятся лимфоциты и моноциты. Обе эти группы клеток принимают активное участие в иммунных реакциях организма. Иммунитет - это способ защиты организма от живых тел и веществ, несущих на себе признаки генетической чужеродности.
Лимфоциты. По степени зрелости лимфоциты делятся на большие (10 мкм), средние ((7-10 мкм) и малые (4,5-6 мкм). Зрелыми являются малые лимфоциты. Они содержат крупное круглое с небольшим вдавлением ядро, занимающее почти всю клетку. Оно окружено узким ободком базофильной цитоплазмы. По происхождению и функциональным свойствам различают 4 основные группы лимфоцитов: В-лимфоциты, Т-лимфоциты, натуральные киллеры (NK) и К-клетки. Все они участвуют в обеспечении иммунных реакций, защите от всего чужеродного, попадающего извне и образующегося в самом организме.
В-лимфоциты Образуются в лимфатических узлах и осуществляют специфический гуморальный иммунитет (поставляют антитела в кровь, лимфу и тканевую жидкость). На поверхности плазмолеммы В-лимфоцитов имеются антигенспецифические рецепторы, представляющие собой антитела – иммуноглобулины (Ig) классов M и D, или поверхностные иммуноглобулины (SIg). Распознаваемые рецепторами антигены присоединяются к ним, вследствие чего В-лимфоциты активируются, многократно пролиферируют и дифференцируются в эффекторные клетки – плазмоциты, или антителообразующие клетки (АОК), способные вырабатывать антитела (иммуноглобулины). Антитела на своей поверхности имеют связующие участки к данному конкретному антигену.
Процесс активации лимфоцитов можно представить в следующей последовательности: Активированный В-лимфоцит → плазмобласт (диаметр до 30 мкм) → проплазмоцит → зрелый плазмоцит (диаметр около 10 мкм).
В-лимфоциты – живут от нескольких недель до десятков месяцев.
Т-лимфоциты, натуральные киллеры (NK) и К-клетки образуются в тимусе. Они осуществляют реакции специфического клеточного иммунитета и регулируют гуморальный иммунитет. В плазмолемме Т-лимфоцитов содержатся поверхностные антигенные маркеры (антигены гистосовместимости) и много рецепторов, с помощью которых они распознают чужеродные антигены и иммунные комплексы. После встречи с антигенами Т-лимфоциты превращаются в Т-эффекторы: Т-киллеры, Т-хелперы и Т-супрессоры.
Эффекторные клетки Т-лимфоцитов Т-киллеры (цитотоксические) – обеспечивают клеточный иммунитет. Обладая цитотоксическим эффектом, они взаимодействуют с клетками-мишенями вследствие непосредственного с ними контакта или благодаря вырабатываемым ими близкодействующим токсическим медиаторам. В результате такого взаимодействия изменяется проницаемость мембраны клетки-мишени, что и приводит её к гибели.
При действии антигенов в Т-лимфоцитах вырабатываются особые растворимые вещества лимфокины, которые передают информацию об антигенах В-лимфоцитам.
Т-хелперы являются помощниками В-лимфоцитов, они распознают антиген и усиливают выработку антител; Т-супрессоры, наоборот, подавляют выработку антител В-лимфоцитами.
Продолжительность жизни Т-лимфоцитов до 10 лет.
В последнее время в научных публикациях (Г. М.Могильная и соавт., 2002) указывается, что следует ввести принятую иммунологами классификацию Т-лимфоцитов, которая основывается на определении с помощью иммунноцитохимии поверхностных дифференцировочных антигенов (cluster of differentiation - CD).
Тимус покидают две субпопуляции нативных Т-лимфоцитов с антигеном CD23. Т-хелперы маркируются антигеном CD4, а Т-киллеры - CD8. Установлено, что в ходе иммунного ответа CD4+ Т-хелперы (ThO) дают начало двум субпопуляциям Th1- и Th2-хелперов с преобладанием одной из них в зависимости от внутри - или внеклеточной локализации возбудителя, или от особенностей антигена. Путём продукции различных наборов цитокинов Th1 (интерферон гама, фактор некроза опухолей-альфа, лимфотоксин, интерлейкин-2) и Th2 (интерлейкины -4, -5, -6, -10, -13 и трансформирующий фактор роста - бета) регулируют развитие иммунного воспаления. Т-лимфоциты гиперчувствительности относятся к классу Th1-хелперов, поэтому их не обязательно выделять в отдельную клеточную форму. Стоит отметить, что после контакта с антигеном и синтеза цитотоксинов (перфорин, гранзимы) CD8+ Т-киллер получает название цитотоксического Т-лимфоцита (ЦТЛ).
В процессе локального контакта ЦТЛ с клеткой-мишенью происходит строгая направленность выброса цитотоксинов в зону пространственной связи Т-клеточного рецептора и антигена. Помимо этого, наблюдается осмотический лизис клетки, обусловленный самостоятельным эффектом перфорина, что ведёт к освобождению и рассеиванию внутриклеточно локализованного возбудителя. Целесообразно указать, что гибель клетки-мишени путём апоптоза, наступающая при сочетанном воздействии перфорина и гранзимов, биологически целесообразна, поскольку она ведёт к мембранной изоляции деградированного возбудителя или другого антигена.
Т - и В-клетки памяти – лимфоциты, возвращающиеся в неактивное состояние, но уже приобретшие информацию (память) от встречи с конкретным антигеном. При повторной встрече с этим антигеном они быстро обеспечивают иммунный ответ значительной интенсивности.
Т - и В-лимфоциты в сосудистом русле – в функциональном плане относительно неактивны. Их активация осуществляется антигенами, в результате чего эти клетки превращаются в эффекторные формы клеточного и гуморального иммунитета, за счёт чего увеличивается фонд клеток памяти.
Моноциты – довольно крупные клетки, в мазке крови их размеры достигают 15-20 мкм. Содержат крупные ядра лопастной, бобовидной и иной формы. Цитоплазма базофильна. Не смотря на то, что эти клетки относятся к агранулоцитам, в их цитоплазме могут обнаруживаться в небольшом количестве мелкие азурофильные гранулы, представляющие собой лизосомы. В функциональном плане – это типичные макрофаги, которые в периферическом русле крови находятся по пути из красного костного мозга в ткани, где они выполняют специфические защитные функции.
Процентное соотношение различных видов лейкоцитов в периферическом кровеносном русле (лейкоцитарная формула) у разных видов животных варьирует (табл. 2):
Таблица 2. Лейкоцитарная формула (в %)
Гранулоциты |
Агранулоциты |
||||||
Вид животных |
Б |
Э |
Нейтрофилы |
Л |
М |
||
Ю |
П |
С |
|||||
КРС |
0-2 |
5-8 |
0-1 |
2-5 |
20-30 |
40-65 |
2-7 |
Овцы |
0-1 |
4-12 |
0-2 |
3-6 |
35-45 |
40-50 |
2-5 |
Свиньи |
0-1 |
1-4 |
0-2 |
2-4 |
40-48 |
40-50 |
2-6 |
Верблюды |
0-1 |
4-12 |
0-2 |
1-6 |
40-52 |
30-45 |
1-5 |
Лошади |
0-1 |
2-6 |
0-1 |
3-6 |
45-65 |
25-44 |
2-4 |
Собаки |
0-1 |
3-9 |
0 |
1-6 |
45-70 |
20-40 |
1-5 |
Олени |
0-1 |
3-7 |
0 |
2-5 |
55-65 |
20-35 |
1-4 |
Примечание: Б – Базофильный гранулоцит; Э – Эозинофильный гранулоцит; Ю – Юный нейтрофильный гранулоцит; П – Палочкоядерный нейтрофильный гранулоцит; С – Сегментоядерный нейтрофильный гранулоцит.
Как явствует из таблицы, у одних видов животных среди лейкоцитов преобладающими являются лимфоциты, а у других – зернистые лейкоциты.
Таким образом, в периферической крови циркулирует целый ряд клеток, которые обладают специфическими функциями, направленными на обеспечение защиты организма от чужеродных факторов (антигенов). К таковым относятся различные популяции лимфоцитов, потомки моноцитов – макрофаги и зернистые лейкоциты.
Кровяные пластинки. Кровяные пластинки. У млекопитающих – это обломки цитоплазмы мегакариоцитов. У птиц - это ядросодержащие клетки – тромбоциты. Размеры кровяных пластинок варьируют в пределах 2-4 мкм. Они состоят из периферической зоны – гиаломера и центральной - грануломера. Гиаломер в молодых кровяных пластинках окрашивается базофильно, а в старых – оксифильно. В гиаломере есть актин, который участвует в ретракции (уменьшении объёма) кровяных пластинок.
На поверхности плазмолеммы кровяных пластинок содержится гликоликс, гликопротеины которого представляют рецепторы, принимающие участие в адгезии и агрегации кровяных пластинок (агрегация пластинок - их склеивание).
По степени зрелости различают 5 видов кровяных пластинок: юные, зрелые, старые, дегенеративные и гигантские формы раздражения.
Функция кровяных пластинок: в них содержится примерно 12 факторов свёртывания крови. Они принимают участие в коагуляции фибриногена: фибрин → протромбин → тромбин.
В плазме крови содержится фактор свёртывания фон Виллебранда (vWF), к которому в плазмолемме кровяных пластинок имеется специальный рецептор P Ib. Другой рецептор P IIb – IIIа связывает фибриноген, вследствие чего кровяные пластинки агрегируют.
Кроме того, тубулярная система цитоплазмы кровяных пластинок синтезирует циклоксигеназы и простагландины. Она является также резервуаром для ионов Са.
Тромбоциты птиц и пресмыкающихся выполняют аналогичные функции.