Цитологии
1 1 1 1 1 1 1 1 1 1 Рейтинг 3.88 (4 Голоса)

Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается ос­новными красителями. Хроматин состоит из Комплекса ДНК и белка И соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализапии каждой из хромо­сом неодинакова по их длине. Различают два вида хроматина - Эухроматин и гетерохроматин.

Эухроматин. Соответствует сегментам хромосом, которые Деспира-лизованы и открыты для транскрипции. Эти сегменты Не окрашива­ются И не видны в световой микроскоп.

Гетерохроматин. Соответствует Конденсированным, Плотно скру­ченным сегментам хромосом (что делает их Недоступными для транс­крипции). Он Интенсивно окрашивается Основными красителями, и в световом микроскопе имеет вид гранул.

Таким образом, По морфологическим признакам ядра (соотноше­нию содержания эу - и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухроматина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибну­щих клетках, при ороговении эпителиальных клеток эпидермиса - кера-тиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основны­ми красителями интенсивно и равномерно. Такое явление называется Кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

Распределение гетерохроматина (топография его частиц в яд­ре) и соотношение содержания эу - и гетерохроматина Характерны для клеток каждого типа, что позволяет осуществлять их идентификацию как визуально, так и с помощью автоматических анализаторов изобра­жения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина В ядре: его скопления располагают­ся Под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (Перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру .

Тельце Барра - Скопление гетерохроматина, соответствующее од­ной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как ди­агностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Упаковка хроматина в ядре. В дсконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диа­метром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транс­крипции и репликации, остаются нераскрытыми, однако очевидна необ­ходимость Компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гистоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

(1) Упорядоченное расположение Очень длинных молекул ДНК в небольшом объеме ядра;

(2) функциональный Контроль активности генов (вследствие вли­яния характера упаковки на активность отдельных участков генома.

Уровни упаковки хроматина . Начальный уровень упа­ковки хроматина, обеспечивающий образование Нуклеосомной нити Ди­аметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием Хроматиновой фибриллы Диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образу­ют Петли (петельные домены) Диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденси­рованных хромосом, которые выявляются лишь при делении клеток.

В хроматине ДНК связана помимо гастонов также и с Негистоновыми белками, Которые Регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связьвзающих белков, могут участвовать в регулядии активности генов.

Функция хранения генетической информации В ядре в неизме­ненном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при ре­пликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклеотидов. Возникшие повреждения молекул ДНК могут исправляться в ре­зультате процесса Репарации Или путем Замещения После Распознава­ния и маркировки соответствующего участка.

В случае невозможности репарации ДНК при слишком значитель­ных повреждениях включается механизм запрограммированной гибели клетки . В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий реплика­ции и амплификации поврежденного генетического материала.

Способность к репарации ДНК у Взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяс­нить, почему старение является фактором риска развития злокачест­венных заболеваний. Нарушения процессов репарации ДНК Характерно для ряда наследственных болезней, при которых резко Повышены Как Чувствительность к повреждающим факторам, Так и Частота разви­тия злокачественных новообразований.

Функция Реализации генетической информации В интерфазном ядре осуществляется непрерывно благодаря процессам Транскрипции. Геном млекопитающих содержит около ЗхЮ9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в ре­гуляции их синтеза. Функции основной некодирующей части генома не­известны.

При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием Рибонуклеопротеинов (РНП). В первичном РНК-транс­крипте (как и в матричной ДНК) имеются дискретные значащие после­довательности нуклеотидов (экзоны), Разделенные длинными некодирующими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ни­ми белков при переносе в цитоплазму.