Генетика популяций
Для постановки опытов на лабораторных животных необходимо знать генотипы не только определённых особей, но и генетическую структуру всей линии и вида. С этой целью для обновления и развития биологической науки, её анализа, была создана особая область генетики – популяционной генетики или генетики популяций. Методы этой науки позволяют вскрыть закономерности, реализующие в совокупности особи, то есть в популяциях.
С генетической точки зрения популяцию рассматривают как совокупность особей одного вида, населяющих определённую территорию и неодинаковых по своим фенотипическим и генотипическим свойствам. Для анализа в качестве исходной структуры популяции и её изменений обычно рассматривают свободно скрещивающуюся, так называемую панмиктическую популяцию. Все входящие в неё особи могут спариваться друг с другом в любых сочетаниях, независимо от генетической структуры. Свободно скрещивающиеся популяции возможны только у видов, размножающихся половым путём. Исследования генетических процессов, протекающих в естественных условиях размножения животных, птиц, пресмыкающих, насекомых имеют большое значение для познания биологических особенностей, специфики различий и однородности по генотипу в различных средовых условиях.
В панмиктической популяции существует одинаковая вероятность сочетания любых представителей популяции друг с другом, а также равная вероятность дать потомство, однако при этом имеется в виду не чисто физическое спаривание любых самок с любыми самцами, а только принципиальная возможность его осуществления. Отсюда вытекает потребность в построении ещё одной модели, а именно: можно рассматривать всю совокупность половых клеток, образующиеся особями свободно скрещивающей популяции, как единое целое, как будто все они помещены в сосуд и перемешаны друг с другом. В данном случае соединение женских и мужских половых клеток происходит чисто случайно, и его результаты будут зависеть только от частоты (или измеряемой частотой вероятности) тех или других половых клеток. А также каждая половая клетка до оплодотворения содержит только один ген из пары или серии аллелей, то и совокупность генов находящихся в половых клетках всех особей популяции, как единый генофонд. Долю определённых генов одной и той же серии аллелей принято называть частотой генов.
В зависимости от частот отдельных генов встречающихся в популяции можно определить соотношение генотипов и фенотипов. Зная это соотношение можно определить частоты генов, как важнейшие параметры для характеристики популяции [8].
Для разбора метода определения частот генов можно привести конкретный пример. На опытной кроликоферме находилось 729 кроликов серой масти (АА), 111 чёрных, являющихся гетерозиготными (Аа) и 4 кролика белых (аа). Если по количеству образовавшихся половых клеток все категории особей не отличаются друг от друга, то, принимая для простого расчёта только две половых клетки, получим следующее количество генов А и а в общем генофонде кроликофермы.
Ген А (2А) (729 х 2) +111=1569 половых клеток.
Ген аа и аа 111+(4+2)=119 половых клеток.
ИТОГО: 1688 половых клеток.
Составляя соотношение: 1688 - 1,0
1569 - p P=
Cоотношение: 1688 - 1,0
119 - q q =
Общая сумма генов: р(А)=0,93
}∑= 1,0
q(а) = 0,07
В данном простом примере частоты генов вычислены на основе известной численности или долей, генотипически отличающихся друг от друга групп особей. Зная же частоты генов можно предсказать конкретные соотношения, которые будут получены в следующем поколении свободно скрещивающейся популяции. Лучше всего это сделать в общем виде для любых значений р и q в генофонде. Как самки, так и самцы будут образовывать гаметы двух типов А и а в соотношении р(А):q(а). Результаты соединения мужских и женских гамет могут быть показаны с помощью четырёхпольной таблицы 1.
Таблица 1 – Результаты соединения мужских и женских гамет
Мужские Женские |
Гаметы и их частоты, ♀ |
||
Ар |
Аq |
||
Гаметы и их частоты ♂ |
Ар |
ААр² |
Аарq |
аq |
Аарq |
ааq² |
В потомстве образовалось три генотипа в соотношении, выражаемом коэффициентом: Р², 2рq и q² (сумма верхних и нижних полей таблицы) или Р²АА+22рqАа+ q²аа.
Такое соотношение генотипов было названо формулой или законом Харди-Вайнберга, или законом стабилизирующего равновесия, так как оно выражает определённую закономерность, характеризующую популяцию при наличии в ней свободного скрещивания. Такая популяция находится в равновесии по соотношению генотипов, что подтверждается вышеприведенной формулой:
Р²АА+22рqАа+ q²аа =1.
Согласно данному закону Харди-Вайнберга, отсутствие факторов определяющих и изменяющих частоту генов, популяция при любом соотношении аллелей от поколения к поколению сохраняет эти частоты постоянными. Несмотря на некоторые ограничения, по формуле Харди-Вайнберга можно рассчитать структуру популяции и определить частоты гетерозигот, например, по летальным или сублетальным генам, зная частоты гомозигот по рецессивным признакам и частоты особей с доминантными признаками, проанализировать сдвиги в генных частотах по конкретным признакам в результате отбора, мутаций и других факторов.
Во всех популяциях лабораторных животных и в природе при свободном скрещивании происходит расщепление по заданному количеству генов, определяющих разнообразные морфологические и физиологические признаки. В ряде случаев сравнительно легко выделить и аллели отдельных генов, и тогда предстоит грандиозная картина генетической сложности популяции.
Так обстоит дело с анализом генетической структуры популяций у животных, но нам требуется знать факторы способные изменить эту структуру. Их много, но важнейшее место принадлежит отбору.
Под отбором в классическом смысле слова обычно понимают устранение определённой группы особей от размножения, т. е. образования следующего поколения. При отсутствии отбора каждая особь популяции имеет одинаковые шансы дать потомство. Они хоть и случайные, но характеризуются нормальной кривой распределения.
Если же группа особей устраняется от размножения, то на структуру будущего поколения окажет влияние только оставшаяся часть популяции, что неизбежно повлияет на частоту генов в следующем поколении. Однако К. Пирсон показал, что как только возникает состояние панмиксии (свободное скрещивание), соотношение генотипов возвращается к типу, которое соответствует формуле Харди-Вайнберга, но уже в другом их соотношении. Таким образом, при отсутствии браковки гетерозиготных носителей рецессивных аномалий частота появления аномальных животных в популяции остаётся неизменной.